

Synthesis and Characterization of SU8/ZnO Nanocomposite Films for Application in Energy-Harvesting Microsystems

Braj Krishna¹, Amritendu Roy¹, and Kaushik Das¹

¹School of Minerals, Metallurgical and Materials Engineering
Indian Institute of Technology Bhubaneswar

Motivation

- SU8 (negative photoresist) matrix with nano-scale reinforcements can act as structural components of micro-systems.
- Zinc Oxide: lead-free piezoelectric ceramic.
- A composite with SU8 as matrix and ZnO nanoparticles as reinforcement can be used as flexible structural components of micro/nanoscale energy-harvesting devices.
- **Applications:** Energy-source for wearable devices, and for autonomous micro/nano-sensors.

Objectives

- To study the feasibility of spin-coating and patterning of thin films of the SU8/ZnO nanocomposite.
- To develop process-structure-property relationship through
 - i. characterization of the physical properties of the thin film,
 - i. mechanical property
 - ii. electrical property
 - ii. microstructural characterization.

Synthesis of SU8/ZnO Nanocomposite

- The ZnO content varied between 0 25 wt%.
- Process parameters were optimized.

Feasibility of Patterning of SU8/ZnO Nanocomposites

Quasi-static Nanoindentation

- Elastic modulus obtained via quasi-static nanoindenation varies from 6.2 GPa for pristine SU8 to 8.8 GPa for SU8/25 wt% ZnO nanocomposite.
- Hardness varies from 402 MPa to 520 MPa for SU8/ZnO nanocomposites in the same range of ZnO wt%.

Dynamic Nanoindentation

■ Dynamic nanoindentation (nano-DMA) results show that the SU8/ZnO nanocomposites exhibit viscoelasticity at room temperature in the frequency range of 10Hz to 201.5 Hz.

Microstructural Characterization

The integration of ZnO nanoparticles into SU8 produces neither new diffraction peak nor a peak shift, showing that ZnO nanoparticles filled SU8 composite consists of phase separated structures, i.e., polymer SU8 and ZnO nanoparticle.

Current Generation under Mechanical Tapping Mode

Summary

- Nanocomposites thin films were microfabricated using photolithography.
- The nanocomposites were patternable up to 20 wt% ZnO content.
- Considering the optical transparency, distribution of ZnO, mechanical and electrical property the 10 wt% ZnO content nanocomposite will be useful for the device fabrication.

Acknowledgments

Financial support from the Department of Science and Technology-Science and Engineering Research Board (DST-SERB), Government of India, under Young Scientist Scheme (Grant no. YSS/2014/000830) is gratefully acknowledged. The authors would like to thank Indian Nanoelectronics User Program, CeNSE, Indian Institute of Science Bangalore for use of clean room facilities under project code CPU1026.

References

B. Krishna, A. Chaturvedi, N. Mishra, and K. Das, "Nanomechanical characterization of SU8 / ZnO nanocomposite films for applications in energy-harvesting microsystems," *J. Micromech. Microeng.*, vol.28, no. 11, , pp. 1-10, Nov. 2018.